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ABSTRACT

We extend the traditional time-domain identification technique known as the logarithmic decrement
method to include estimation of asymmetric kinetic and viscous friction. The method may be applied
to the free vibration response of a sufficiently underdamped, linear, second-order system with time-
invariant physical parameters; only the time history of displacement data is needed for the identification.
The technique is demonstrated in theory, and verified by simulation.

INTRODUCTION

Simple Harmonic Motion

Consider the free (homogeneous) harmonic oscillation of the piecewise linear, time-invariant, second-order system

mẍ(t) + cẋ(t) + kx(t) + fc = F0 , (1)

where in order to produce an underdamped system oscillation, customarily a step input force F0 is the system input.
Coulomb friction [Coulomb (1785)] is a piecewise constant function defined in terms of static and kinetic friction:

fc =

�
fs ẋ(t) = 0

fk sgn(ẋ) ẋ(t) 6= 0
, (2)

where due to the nature of friction fs ≥ fk (ergo, the counter-intuitive phenomenon of stick-slip friction, or stiction).
Substituting ẍ(t) = ẋ(t) = 0 into (1), the static friction satisfies

x(t) ≤ xs where xs � fs/k . (3)

This describes a region of possible positions x for which the spring force kx is insufficient to produce movement by
overcoming the static friction fs. The static friction is important, but let us now first consider the kinetic friction on
the system.

Notice that equation (1) is linear when either ẋ < 0 or ẋ > 0. Defining

xk � fk/k and x0 � F0/k , (4)

we can thus reformulate the problem in terms of the piecewise linear equation

mÿ(t) + cẏ(t) + ky(t) = 0 , (5)
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where

y(t)
�

x(t) + xk sgn ẋ(t)− x0 and ẏ(t) ≡ ẋ(t) , (6)

within regions of unidirectional motion (those for which ẋ does not change sign).

Underdamped Response

The underdamped, transient response may be expressed as

y(t) = Ae−σt sin(ωdt− φ0) (7)

where the rate of decay

σ
� c

2m
, (8)

which relates the underdamped natural frequency

ωd

���
ω2

0 − σ2 , (9)

where σ2 < ω2
0, to the undamped natural frequency

ω0

��� k

m
. (10)

The oscillation has an amplitude (also called envelope)

A2 =
ẏ2
0 + 2σẏ0y0 + ω2

0y
2
0

ω2
d

(11)

and phase

tan φ0 = −
ωdy0

ẏ0 + σy0

, (12)

given the initial conditions on position and velocity

y0

�
y(t0) and ẏ0

�
ẏ(t0) . (13)

These equations are valid for all underdamped, second-order oscillations, provided that the physical quantities m > 0,
c ≥ 0 and k > 0.

Asymmetric Harmonic Motion

Many real systems exhibit appreciable asymmetric Coulomb and viscous friction, which can be defined as

fs = f̄s + ∆fs sgn Fr(t) (14a)

fk = f̄k + ∆fk sgn ẋ(t) (14b)

c = c̄ + ∆c sgn ẋ(t) (14c)

where the terms with a bar denote the mean frictional values, and those with the ∆ denote their variation depending
on the direction of the residual force Fr(t) or motion ẋ(t).

The asymmetric Coulomb friction can be expressed in terms of the parameters xs and xk as before, in which case
the asymmetries give rise to a constant offset in the displacement response x(t) as per (6). The system’s displacement
may thus be written in the more general form

y(t)
�

x(t) + xk sgn ẋ(t)− x0 = x(t) + xk sgn ẏ(t) − x0

= x(t) + [ x̄k + ∆xk sgn ẏ(t) ] sgn ẏ(t)− x0 = x(t) + x̄k sgn ẏ(t) + ∆xk − x0 ,
(15)

the solution of which now also contains the asymmetric rate of decay

σ
�

σ̄ + ∆σ sgn ẏ(t) , (16)

where of course ẏ(t) ≡ ẋ(t) as before, within regions of unidirectional motion.
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SYSTEM PARAMETER IDENTIFICATION

The Logarithmic Decrement Method

The logarithmic decrement method is a popular way to identify an underdamped system by examining the
envelope and frequency of its oscillation. It has its roots in work pioneered over a century ago; recently it was
revisited by Feeny and Liang [Feeny and Liang (1996)] to include estimation of Coulomb friction in addition to the
usual viscous vibration damping; the derivation is elucidated below.

Given an underdamped oscillation (7), its velocity may be written

ẏ(t) = Ae−σt [ωd cos(ωdt− φ0) − σ sin(ωdt− φ0)] , (17)

which is nil ( ẏ(t) = 0 ) when the displacement y(t) is at a maximum or minimum (at a peak). Denoting the nth peak
displacement as yn(t), and the corresponding velocity ẏn(t) = 0, the angle of oscillation ωdt − φ0 at peak n can be
written as

tan(ωdt− φ0) =
ωd

σ
=

�
1 − ζ2

ζ
. (18)

The phase at the nth peak is

tan φ0 = −
ωdyn

ẏn + σyn

, (19)

which when substituted into the trigonometric expansion of (18) yields

tan ωdt =
ωdẏn

σẏn + ω2
0yn

. (20)

This expression is always nil because ẏn = 0 by definition, and thus ωdt = nπ, from which it follows that

σt = ζω0t = nπ
ζ�

1 − ζ2
= nπ

σ

ωd

(21)

and

sin ωdt = sinnπ = 0 and cos ωdt = cos nπ = (−1)n (22)

at the nth oscillation peak.
Substituting ẏn = 0 into equations (11) and (19) further yield, respectively,

A =
ω0

ωd

y0 , sinφ0 = −
�

1 − ζ2 , and cos φ0 = ζ . (23)

Substituting the results of equations (21) - (23) into the trigonometric expansion of (7) finally gives the nth peak
displacement

yn = (−1)ny0e
−nπβ = −yn−1e

−πβ
∀ n > 0 , (24)

where the logarithmic decrement is defined as the logarithm of the ratio between successive peaks,

πβ � − ln � − yn

yn−1 � = −
πζ�
1 − ζ2

= −
πσ

ωd

, (25)

which, incidentally, is the equivalent of (−π cot φ0) at the oscillation peaks.

Asymmetric Friction Estimation. The traditional logarithmic decrement method may be extended to additionally

estimate frictional asymmetry. Asymmetric viscous friction can be expressed in terms of two values β+ and β− such
that equation (24) becomes

yn = −yn−1e
−πβ , (26)

where either β = β+ or β = β− depending on whether n is even or odd (exactly which is unimportant, as long
as the user is consistent with the adopted notation). For symmetric β = β+ = β− this collapses once again into
equation (24).
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When the asymmetric dry and viscous friction of equations (15) and (16) are substituted into the oscillation
peaks given by (26), the frictional asymmetry of the oscillation becomes visible:

xn + xn−1e
−πβ+

= −

�
1 + e−πβ+ �

[∆xk + (−1)nx̄k] (27a)

xn−1 + xn−2e
−πβ− = −

�
1 + e−πβ− ���∆xk + (−1)n−1x̄k � , (27b)

with the substitution sgn ẏ = sgn ẋ = (−1)n, where n is odd if motion starts in the negative direction (either y0 > 0
and/or ẏ0 < 0), and even if motion starts in the positive direction (either y0 < 0 and/or ẏ0 > 0). The (+) and (−)
superscripts on β denote the direction of motion (sgn ẏ) between oscillation peaks, and the associated positive or
negative viscous friction bias introduced by the asymmetric damping of equation (16).

It is important to note that the sgn ẏ term in equations (15) and (16) is constant for all motion between points
n and n− 1; in other words, the signum function changes sign only in-between the oscillation peaks, not at the peaks
themselves, where instead it equals zero. Successive peak displacements are used to infer information about the
motion between those peaks, not at the peaks themselves, hence the correct sign of the signum function as applied
to the frictional term x̄k at those peaks should be that of the velocity between the same. This explains why the
(−1)nx̄k term can be gathered with the ∆xk term on the right hand sides of equation (27).

Notice furthermore that the expression solved for x(t) in equation (15) is equivalent to the solution for y(t) as
defined, but for the sign reversal of the kinetic friction terms. Because of this similarity in the solution form, yn

may be substituted for xn in (27) by reversing the sign on the right-hand sides of the equations. In this manner the
friction can be estimated from the actual data points y(t) (since the friction-free displacements x(t) are unknown
before the friction is estimated).

Solving for the decrement ratios,

e−πβ+

= −
yn − yn−2

yn−1 − yn−3

and e−πβ− = −
yn−1 − yn−3

yn−2 − yn−4

. (28)

These results are an extension of equation (25) which take advantage of the observation that yn − yn−2 = xn − xn−2

to remove the kinetic friction contribution from the viscous friction estimation.
Solving (27) for the kinetic friction parameters, the kinetic friction is given by

x̄k =
1

2(−1)n � yn + yn−1e
−πβ+

1 + e−πβ+
−

yn−1 + yn−2e
−πβ−

1 + e−πβ− � (29a)

and

∆xk =
1

2 � yn + yn−1e
−πβ+

1 + e−πβ+
+

yn−1 + yn−2e
−πβ−

1 + e−πβ− � + x0 . (29b)

The asymmetric kinetic friction may be determined directly from the logarithmic decrement and oscillation peaks
as per equations (29). Using the logarithmic decrement values in equations (28), the respective viscous damping ratios
may also be determined from equation (25):

ζ± = � (β±)2

π2 + (β±)2
, (30)

from which

ζ̄ =
ζ+ + ζ−

2
and ∆ζ = ���� ζ

+ − ζ−

2
���� . (31)

Identification Procedure. When the viscous friction is asymmetric (∆ζ 6= 0), the oscillation will also be asym-
metric, complicating the natural frequency estimation. Whereas the natural frequency of the system is of course
constant, the damped natural frequency, as evident in the asymmetric response, takes one of two values depending
on the direction of motion:

ω±d =
π

∆t±
, (32)
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where the ∆t denotes the time difference between successive oscillation peaks:

∆t+
�

tn − tn−1 and ∆t−
�

tn−1 − tn−2 . (33)

The natural frequency of the system is then given by

ω0 =
ω±d�
1 − ζ±

. (34)

(Naturally, if these two equivalent terms are averaged, the estimation can also be improved against noise in the data.)
Note lastly that the equations presented in this section are first-order approximations, using the fewest number

of data for each estimation. The approximations may be extended to higher dimensions by further combining the
successive terms defined in equations (27).

DISCUSSION

Table 1 shows the results of estimation on simulated oscillations for various friction conditions. The results are
generally accurate to within five per cent.

Generally speaking, the more oscillations, the better the log decrement estimation. On the other hand, the
method works reasonably well even with the minimum of four oscillation peaks, depending on the signal-to-noise
ratio of the oscillation data.

Since the estimation of parameters using the simulated response has an accuracy only on the order of about five
per cent, this would be the anticipated baseline accuracy for analysis using experimental data. Unlike some other
methods, the logarithmic decrement method uses only a fraction of the information avaliable in the data (the peak
times and values). This has the advantage of allowing parameter estimation in the presence of noise, however this is
traded off for a moderate loss in accuracy. It is nonetheless also one of the few methods available for determining the
friction asymmetry in such a straightforward manner.

When the estimation for k is corrected with the information that there should be no spring force in the system,
the corrected mass estimate is within one per cent of the true value. This shows that quality of the mass estimation
depends directly on the quality of the frequency and damping data measured during oscillation. In practice, the
frequency estimation is quite accurately accomplished by examining the zero- (or mean-) crossings of the oscillation;
it is the damping estimates determined by the log decrement method which generally exhibit the larger of the
estimation errors.

CONCLUSION

We show how to determine the asymmetric kinetic and viscous friction via an extended treatment of the loga-
rithmic decrement method. For overdamped systems, the same identification may be performed by applying the new
parametric oscillation method. The latter also provides a mechanism for estimating the system mass, and hence its
mass-based parameters.

We would like to invite the reader to download and examine the c, Matlab and data files used to prepare the
simulations and experimental analysis, by visiting our web address. We would furthermore appreciate any comments
or feedback via e-mail.
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APPENDIX: PARAMETRIC OSCILLATION DATA

TABLE 1: Simulation: Log-Decrement Identification.

ω0 (rad/s) f̄k ±∆fk (Nm) c̄±∆c (Nms/rad)

simulated 3.162 0.2000 ± 0.5000 0.4000 ± 0.3000
estimated 3.277 0.2148 ± 0.5370 0.4140 ± 0.3109

% error 3.6% 7.4% ± 7.4% 3.5% ± 3.6%

simulated 4.000 0.2000 ± 0.5000 0.3000 ± 0.4000
estimated 4.129 0.2130 ± 0.5326 0.3095 ± 0.4129

% error 3.2% 6.5% ± 6.5% 3.2% ± 3.2%

simulated 4.000 0.0700 ± 0.1300 0.3000 ± 0.0000
estimated 4.023 0.0715 ± 0.1352 0.3015 ± 0.0002

% error 0.6% 2.1% ± 4.0% 0.5% ± 0.2%

simulated 4.000 2.0000 ± 2.0000 0.6250 ± 0.1250
estimated 4.024 2.0098 ± 2.0316 0.6155 ± 0.1134

% error 0.6% 0.5% ± 1.6% 1.5% ± 9.3%

simulated 2.000 0.0000 ± 0.0000 0.4000 ± 0.3000
estimated 2.094 0.0000 ± 0.0000 0.4184 ± 0.3141

% error 4.7% 0.0% ± 0.0% 4.6% ± 4.7%

simulated 2.000 0.2000 ± 0.0000 0.5000 ± 0.0000
estimated 2.015 0.2030 ± 0.0001 0.5034 ± 0.0000

% error 0.8% 1.5% ± 0.1% 0.7% ± 0.0%

simulated 4.000 6.2500 ± 5.7500 0.6250 ± 0.1250
estimated 4.026 6.3193 ± 5.7178 0.6293 ± 0.1288

% error 0.7% 1.1% ± 0.6% 0.7% ± 3.0%

simulated 4.000 0.4000 ± 0.3000 0.1000 ± 0.0000
estimated 4.114 0.4213 ± 0.2836 0.1013 ± 0.0008

% error 2.9% 5.3% ± 5.5% 1.3% ± 0.8%
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TABLE 2: Pendulum System Identification.

(Published values from PMI Motion Technologies (1986a) and Tüfekçi et al. (1998).)

motor only motor + cart

published measured error published measured error

∆t (ms) 10.84 9.2838 14% – 10.548 –

m (kg) 1.4250 1.6466 16% 2.3900 2.4223 1.4%

k (N/m) 0 (nil) 2.8790 9.3% 0 (nil) +8.9827 –

c̄ (Ns/m) 0.3656 0.3727 1.9% – 0.8043 –

∆c (Ns/m) 0 (nil) -0.0096 – – +0.3268 –

f̄k (N) 3.7330 -5.1676 38% – 7.9340 –

∆fk (N) 0 (nil) 1.5043 – – +0.7163 –

TABLE 3: Test Bed System Identification.

(Published values from PMI Motion Technologies (1986b), Walczyk (1991), and Prakah-Asante et al. (1993).)

A only A + B A + B + C

published measured error published measured error published measured error

∆t (ms) 13.77 12.24 11% – 10.76 – – 10.63 –

J (Nms2) 0.0115355 0.01194 3.5% 0.0150626 0.01744 16% 0.0339399 0.03136 7.6%

k (Nm) 0 (nil) 0.001034 1.6% 0 (nil) 0.1492 24% nil (0) -0.01168 1.9%

c̄ (Nms) 0.0007457 0.002355 216% 0.0018657 0.001233 34% 0.0029857 0.004514 51%

∆c (Ns/m) – 0.0002458 – – 0.000848 – – 0.000858 –

f̄k (Nm) 0.109456 -0.07233 34% 0.1416169 -0.1921 36% 0.1711679 -0.1968 15%

∆fk (Nm) – 0.008622 – – 0.0243 – – 0.005588 –
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