

Rensselaer Polytechnic Institute Mechatronics Research Program

Friction and Compliance in Identification of Backlash, **Machine Tool Drive Trains**

National Science Foundation Mechatronics in Machine Tools Grant Julian A. de Marchi, G.R.T. Dr. Kevin C. Craig, Co-P.I. & Thesis Advisor

Motivation

Drive nonlinearities cause machining errors

- cause of positioning error in workpiece cutting and
- exacerbated when machining at high speeds and a
- cause of damage to workpiece and cut tng tods

• Frictional errors

- thermal expansion
- stick-slip friction (stiction)

Compliance error

- vibration
- energy storage and relea

Objectives

- Using a generalized model of drive nonlinearit tods may be controlled more precisely and a
 - model nonlinear friction, backlash and compliance
 - model dynamic interaction between the componen
 - apply model to, and verify using, data from actual

Overall Approach

Develop analytical model
 model nonlinear friction, backlash & compliance of

Develop system identification

- verify system ID procedure on simu

- Identify machine tod dynamics
 - test system ID on test bed and actual machine
 - corroborate known parameter values and put

Technical Details: Fric

Technical Details: Fric

Technical Details: Back

Technical Details: Comp

Technical Details: ID Pr

Department of Mechanical Engineering, Aeronautical Engineering & Me

Technical Details: ID Me

- <u>Pros</u>: Logarithmic decrement method
 <u>static</u>, kinetic, and viscous friction
 <u>Inear compliance</u>
 <u>Pros</u>: Hil bert Transform
 <u>kinetic and viscous friction</u>
 <u>unimodal norlinear compliance</u>
 <u>backlash with impact</u>
 <u>Cons</u>
 <u>Cons</u>
 <u>Cons</u>
 <u>Source</u>
 <u>Cons</u>
 <u>Source</u>
 <u>Cons</u>
 <u>Source</u>
 <u>Sour</u>
 - <u>Pros</u>: Wavelet Transform
 - multimodal norlinear compliance
 cleaner data than Hilbert Transform

Results: Test Bed

Results: Objectives Ach

• Modeling

- analytical models of nonlinear subsystems develop

- analytical model of fully-coupled subsystems in si

• System I D

 traditional methods extended to piecewise linear sy — nonlinear Hilbert method verified onfriction

• A ctual machine dynamics)

- system ID techniques corroborate published param

Results: Friction ID Exa

- System without
 - Coulomb fric
 - viscous fricti
 - frictional bia
 - compliance
- Excited via the harmonic os
 - free vibration
 logarithmic
 Hilbert Tran
 - dual analyses
 - also provide

Results: Experimental

- Log decrement method
 Hil
 estimates compliance,
 Coulomb friction and bias
 - Hil bert Transform
 estimates friction
 also can estimated

Unique Contributior

- New dynamic backlash model
 - state-of-the-art backlash model augmented to includ
- New dynamic model & simulation of drive non
 - fully nothinear, coupled equations-of-motion
 - simulation of arbitrary friction, backlash & complian
- New parametric harmonic oscillation ID
 - experimental method sing P+D feedback to achieve vibration response in overdamped systems
 - machine resonance frequencies automatically eschew
 - methodallows use of log decrement, Hilbert and way out requiring a sine-sweeped forced harmonic oscill
 - produces estimates of inertia and mass-based system

Continuing Work

- Identification
 - backlash
 - backlash with compliance
 - asymmetric (direction-dependent) nonlinearity
 - periodic friction
 - static and hysteretic friction
- Analysis
 - extension to Wavelet Transform analysis
- Application
 - automation of identification procedure

Future Work

• Application

- apply testbed results to an actual machine tod
- motorised workpiece table on dill pressin laborate
- Extension
 - on-line and adaptive system ID techniques

• Development)

- feedforward control and adaptive control

Lab Demonstration

- Nonlinear system modeling and simulation
- Signal processing details
- Mechatronic implementation
- Friction identification
- Backlash identification
- Compliance identification
- Machine tod instrumentation approach