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ABSTRACT

We introduce a novel feedback technique, called parametric harmonic oscillation, whereby even highly
overdamped systems can be made to mimick underdamped free harmonic vibration. This allows one to
extend identification methods intended for underdamped systems to any second-order system, including
those which are heavily overdamped. We also show how to use the parametric harmonic oscillation
method to reveal the physical mass, viscous friction, and stiffness parameters of the system, as well as
the usual mass-dimensionalised natural frequency and damping coefficient. The applicability of the new
technique is demonstrated in simulation.

INTRODUCTION
Simple Harmonic Motion

Consider the free (homogeneous) harmonic oscillation of the piecewise linear, time-invariant, second-order system

mẍ(t) + cẋ(t) + kx(t) + fc = 0 . (1)

The dynamics of this system (x(t) and its derivatives) describe a simple harmonic motion.

Transient (Unforced) Harmonic Oscillation
The transient response is that observed when the system is unforced (F (t) ≡ 0). The general (homogeneous)

solution may be expressed as

x(t) = Ae−σt sinh(ωdt− φ0) (2)

where the rate of decay

σ
� c

2m
, (3)

which relates the damped natural frequency

ωd

���
σ2 − ω2

0 (4)
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to the (undamped) natural frequency

ω0

��� k

m
. (5)

The oscillation has an amplitude (also called envelope)

A2 =
ẋ2

0 + 2σẋ0x0 + ω2
0x2

0

ω2
d

(6)

and phase

tanh φ0 = − ωdx0

ẋ0 + σx0
, (7)

given the initial conditions on position and velocity

x0

�
x(t0) and ẋ0

�
ẋ(t0) . (8)

These equations are valid for all real first- and second-order oscillations, regardless of damping or stiffness, provided
that the physical quantities m > 0, c ≥ 0 and k ≥ 0.

Overdamped Response. The system is overdamped when σ2 > ω2
0 . In this case equation (2) may be applied

without modification. The special case when k = 0 (ω0 = 0) results in an equivalent first-order system, which has
no static restoring (spring) force. Usually this first-order response is analysed in terms of a first-order system, for
example

mż(t) + cz(t) = F (t) , (9)

from which the response is recovered by integrating the solution z(t)
�

ẋ(t). However, the very same response may
be obtained simply by substituting k = 0 directly into equations (2) through (8).

Critically-damped Response. For systems with non-zero stiffness k > 0, the nondimensional damping coefficient
is written as one of the standard equations

ζ
� σ

ω0
=

c

cc

=
c

2mω0
=

c

2
√

mk
. (10)

The meaning of the damping coefficient ζ as the ratio between the viscous damping coefficient c to the critical damping
coefficient cc is that the critical value c = cc demarcates the oscillatory and non-oscillatory system responses. For
underdamped systems, 0 ≤ ζ < 1.

When σ2 = ω2
0 (ζ = 1) the system is critically damped. In this case, both ωd = 0 and φ0 = 0. Observing that

lim
ωd→0

sinh ωdt

ωd

= lim
ωd→0

sinωdt

ωd

= t , (11)

substitution into equation (2) results in the familiar expression for the critically-damped response,

x(t) = te−σt � ẋ2
0 + 2σẋ0x0 + ω2

0x2
0 . (12)

Notice that since σ = ω0, either may be used interchangeably in the final expression.

Underdamped Response. The system is underdamped when σ2 < ω2
0 . In this case, ωd (as defined) will be an

imaginary number, so it is customarily redefined to be the complex conjugate of equation (4). Thus, using iωd and
iφ0 instead of ωd and φ0, respectively, in equations (6) and (7), and then substituting into (2),

x(t) = −iAe−σt sinh(iωdt− iφ0) . (13)
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This can be rewritten via the identity

−i sinh(ix) = sin(x) , (14)

to reveal the familiar equation for underdamped oscillation,

x(t) = Ae−σt sin(ωdt− φ0) . (15)

The overdamped and underdamped equations are therefore mathematically equivalent; redefining the damped natural
frequency to maintain its realness for underdamped oscillations is generally a matter of convenience for educational
and interpretive purposes, since usually people are more intimately familiar with the behaviour of regular sines and
cosines than of their hyperbolic equivalents.

SYSTEM PARAMETER IDENTIFICATION
The ultimate objective of system identification is to discover the physical parameter values which ascribe the

system’s behaviour. For the systems described in this treatment, the values of mass m, viscous friction coefficient
c, and spring constant k should be estimated. It is difficult to measure precisely the values of these parameters
when they differ greatly in relative scale. For example, when there is very little damping (ζ ≈ 0), the behaviour is
predominantly oscillatory and c will be difficult to estimate with good confidence. Similarly, k is nearly impossible
to estimate when the natural frequency of the system is close to naught (ω0 ≈ 0). The system mass m is also hard
to determine when it is small relative to c and k. Ideally, therefore, each of these parameters would be close to one
another in relative scale. However, this is impossible to achieve physically if the system parameters are for some
reason unchangeable. The problem is that oscillatory motion is required to implement most available time-domain
identification techniques with reasonable precision.

Forced Harmonic Oscillation
Oscillatory motion may be induced in the system by applying an external harmonic force F (t). After the transient

response of the system has subsided (Ae−σt in equation (2) is acceptably small for some t � t0), the steady-state
response x(t� t0) will be an oscillation at the same frequency as that of the input F (t).

For example, let the forcing function be defined as

F (t)
�

B sin(ωt − θ) . (16)

The persistent system response to this force is then

xp(t)
�

x(t� t0) = C sin(ωt − φ) . (17)

Substituting this F (t), with the associated xp(t) and its derivatives, into (1),

(k −mω2) sin (ωt − φ) + cω cos (ωt − φ) =
B

C
sin (ωt − θ) . (18)

Expanding the trigonometric functions and equating the resulting terms,

(k −mω2) cos φ + cω sinφ =
B

C
cos θ (19a)

and

−(k −mω2) sin φ + cω cosφ = −B

C
sin θ . (19b)

Alternately (post-)multiplying by sin φ and cos φ, these equations may be combined to produce the compact result

(k −mω2) = R cos ρ and cω = R sin ρ , (20)

where the relative stiffness and relative phase (lag) are

R
� B

C
and ρ

�
φ− θ . (21)
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(Note that C is an inherent function of ω, with units of mass, whereas B is a constant with units of force.)
Applying successive forcing frequencies ωi, the mass may be estimated as

m =
Rj cos ρj − Ri cos ρi

ω2
i − ω2

j

, (22a)

the damping as

c =
ωiRj sin ρj + ωiRj sin ρj

2ωiωj

(22b)

(which is merely the average of successive measurements) and the stiffness as

k =
ω2

i Rj cos ρj − ω2
j Ri cos ρi

ω2
i − ω2

j

. (22c)

Parametric Harmonic Oscillationusing Proportional and Derivative Feedback
An alternative to forced harmonic oscillation is the parametric harmonic oscillation method, which resolves the

need for oscillation by artificially modulating the energy dissipation and storage of the system. Rather than forcing
the system with a sinusoid, the damping and stiffness of the system are artifically manipulated, producing various
(artificial) free harmonic oscillations. Consider the forced second-order system

mẍ(t) + cẋ(t) + kx(t) = F (t) = −
�
Diẋ(t′) + Pix(t′) � , (23)

where D is a derivative feedback constant with the same units as c, and P is a proportional feedback with the same
units as k. The control force is presumed to be delayed by some time interval ∆t � t− t′, due to any of a number of
realistic factors, such as measurement and computation delays, or the mechanical or electrical time constant of the
motor and amplifier providing the parametric feedback.

Because the whole idea behind parametric harmonic oscillation is to produce an artificially underdamped system,
we can assume that the displacements have the form described by equation (15). Therefore

x(t′) = Ae−σt′ sin � ωdt′ − φ0 � = Ae−σ(t−∆t) sin [ωd(t−∆t) − φ0]

= Ae−σteσ∆t [cos(∆φ) sin(ωdt − φ0) − sin(∆φ) cos(ωdt− φ0)] ,
(24)

and its derivative

ẋ(t′) = Ae−σteσ∆t {[ωd sin(∆φ) − σ cos(∆φ)] sin(ωdt− φ0) + [σ sin(∆φ) + ωd cos(∆φ)] cos(ωdt− φ0)} , (25)

where the phase lag caused by time delay ∆t

∆φ � ωd∆t . (26)

We would like to rewrite x(t′) and its derivative wholly in terms of x(t) and its derivatives, since only these states
are measurable. From equation (15) and its derivative, we know that

Ae−σt cos(ωdt− φ0) =
ẋ + σx

ωd

. (27)

Substituting this result, along with equation (15), into equations (24) and (25), respectively, we obtain the simplified
result

x(t′) = [(α1 − σα2) x(t)− α2ẋ(t)] . (28a)

Noting that the system is underdamped by virtue of the parametric feedback, the complex conjugate of equation (4)
can be used to make the substitution ω2

0 = ω2
d + σ2, from which the derivative of x(t) is

ẋ(t′) =
�
ω2

0α2x(t) + (α1 + σα2) ẋ(t) � , (28b)
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where

α1

�
eσ∆t � cos(∆φ) − σ

ωd

sin(∆φ) � and α2

�
eσ∆t 1

ωd

sin(∆φ) . (29)

Now, gathering the terms of equation (23) yields the homogenous form

mẍ(t) + � cẋ(t) + Diẋ(t′) � + � kx(t) + Pix(t′) � = 0 . (30)

Substituting equations (28a) and (28b) and gathering like terms produces the simplified homogenous equivalent

mẍ(t) + ciẋ(t) + kix(t) = 0 , (31)

where

ci

�
c + c′i = c + (α1i + σα2i)Di − α2iPi (32a)

and

ki

�
k + k′i = k + (α1i − σα2i)Pi + ω2

0α2iDi , (32b)

with a solution of the same form as equation (15). Here the subscript i denotes the analysis of the ith response
oscillation of the system, obtained using predetermined proportional and derivative feedback gains Pi and Di. The
system’s harmonic oscillation may thus be controlled as if the feedback parameters were built into the physics of the
system itself. Notice that when c′i > 0, damping is added to the system, and when c′i < 0, damping is removed from
the system. Similarly, when k′i > 0, the system is stiffened, and when k′i < 0, the system’s stiffness is relaxed.

Since the feedback gains are predetermined, the rate of decay σ and natural frequency ω0 may be estimated in
spite of the feedback time delay ∆t. In the absence of a time delay (∆t = 0), α1 = 1 and α2 = 0, so that c′i ≡ Di and
k′i ≡ Pi. In the absence of parametric feedback, of course (c′i ≡ k′i ≡ 0), equations (32a) and (32b) reduce to ci ≡ c
and ki ≡ k, respectively, as would be expected.

(Pseudo-)Free Parametric Harmonic Oscillation. The significance of the parametric harmonic oscillation tech-
nique is that, for example, heavily overdamped systems (c� k) can be identified using methods requiring oscillations,
and heavily underdamped systems (c� k) can be identified more quickly by introducing appropriate damping. The
harmonic oscillation is now controlled by appropriate selection of values for Pi and Di.

Using the parametric values ci and ki, equations (3) and (5) yield

ci = 2mσi = 2mζiω0i and ki = mω2
0i . (33)

Equations (32a) and (32b) yield

c′i = ci − c and k′i = ki − k , (34)

and substituting these into equations (33),

c′i = 2mσi − c and k′i = mω2
0i − k . (35)

Both these equations have the form of straight lines. Taking the multiplier of m as the “independent” variable (2σi

and ω2
0i, respectively), and the primed, left-hand side as the “dependent” variable (c′i and k′i, respectively), the slope

of either equation will be m, whereas the negative of the intercept of the former equation will yield c, and that of the
latter, k. Thus the physical parameters can be determined directly, using a linear least-squares fit, provided two or
more oscillation measurements i are made.

SIMULATION RESULTS
Table 1 shows the results of a parametric harmonic oscillation for a system with the physical values shown. The

results are obtained from the logarithmic decrement analysis of 19 oscillations, with Pi varying from 0.25 N/m to
25 N/m in steps of 1.375, and Di varying from 0.6 Ns/m to 6 Ns/m in steps of 0.3, respectively.

Figures 1(a) and 1(b) show the least-squares fits to the c′i and k′i parameters. The lines denote the linear fits,
the circles denote the values adjusted for a time delay ∆t = 0.1 s, and the crosses denote the values without time
delay compensation. The dashed lines indicate the least-squares curve fit without time delay compensation. Clearly,
without compensation, the friction estimations do not fit a line, and the stiffness estimations have the wrong slope
even though they do fit a straight line. In both figures, the slopes of the compensated fits can be seen to equal the
correct mass, and their intercepts equal the correct viscous friction, and stiffness, respectively.
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(a) Actual vs. Estimated Mass (slope) and Viscous Friction (intercept).
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(b) Actual vs. Estimated Mass (slope) and Stiffness (intercept).

DISCUSSION
Intuitively, the more oscillations i that are available, the more confidence can be placed in estimations made in

this manner. Take note, however, that when dealing with real data containing noise, the intercept estimations will
suffer regardless of the number of oscillations if the respective slope is small. Thus, the estimate for c may be poor if
there is little change in the damping between successive oscillations, and that of k may suffer if there is little change in
the frequency between successive oscillations. This indicates that in spite of the flexibility offered by the parametric
harmonic oscillation approach, care must be taken to sweep across some appreciable range of both damping and
frequency. Fortunately, this can be accomplished by proper selection of the feedback parameters Pi and Di, which
can be varied as necessary.

Counteracting the usefulness of many oscillations is the fact that when using discrete-time measurements of the
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TABLE 1: Parametric Oscillation Results with and without Time Delay Compensation.

actual value with compensation without compensation

m (kg) 2 1.9884 1.0169

c (Ns/m) 1 1.0035 4.2321

k (N/m) 64 63.7668 35.1812

response, higher frequencies, which result in more oscillation, will reduce the effective resolution of the frequency
estimation, because each oscillation cycle will occur over a smaller range of measurements for a fixed sampling time.
This should be taken into consideration when applying the parametric harmonic feedback using a digital control
system.

The viscous friction estimation suffers in the experimental situation when there is a time delay in the PD-feedback
loop used for parametric harmonic oscillation. The severity of this problem depends on the length of the delay relative
to the period of each harmonic oscillation. Because larger system masses produce slower oscillations, it is typically
the systems with smaller mass which exhibit this adverse effect. It may therefore be advisable to add mass to the
system for the experimentation, and then subtract this known value from the final estimation, in order to circumvent
the time delay effect when it cannot be estimated directly. Mass estimation is relatively insensitive to the accuracy of
the friction estimation using this method. However, accurate estimation of the viscous friction and stiffness requires
either a small relative time delay ∆t, or that it is measured directly and compensated for as discussed. One way of
doing this is by comparing the feedback command signal (for instance, the computer command to the motor amplifier)
against the actual signal exciting the system (the actual motor current).

Derivative feedback requires velocity estimation, which for real-time digital control systems can be a challenge
to implement with accuracy. Notice, however, that when there is an inherent time delay, the method can be applied
using only proportional feedback, since although in such a situation Di ≡ 0, both values α are non-zero, allowing Pi

to determine both c′i and k′i. When the delay is small, however, Pi must be changed dramatically to reduce noise in
the estimation of c.

Lastly, it is worth noting that an interesting phenomenon occurs when there is appreciable kinetic friction but
little viscous friction. When the maximum oscillation velocity is such that the maximum viscous friction is always
less than the kinetic friction, it is possible to oscillate the system with negative damping and still achieve a stable
response. In such a situation, the parametric damping coefficient c′i < 0, and the envelope of the oscillation will
have an accelerated slope, rather than a decelerated slope as for an exponential decay (the envelope will be bullet-
shaped). For systems with a high kinetic friction this means that negative damping can be used to obtain the system
parameters. Normally, in the absence of kinetic friction, negative damping causes exponential instability, so in any
case negative damping should be used with caution. However, if the kinetic friction is high then negative damping will
be the only way to obtain sufficient oscillation for successful identification using the parametric harmonic oscillation
method, unless the PD feedback is augmented with a dc offset in the (alternating) direction of oscillation.

CONCLUSION
The same identification techniques traditionally reserved for the free harmonic response of underdamped systems

may now be performed on overdamped systems, by applying the new parametric oscillation method. This method
also provides a mechanism for estimating the system mass, and hence its mass-based parameters.

Unlike the popular forced harmonic oscillation method, the parametric harmonic oscillation method has an intu-
itive physical association with the system damping and frequency, allowing conservative choices for the proportional
(P) and derivative (D) feedback parameters which can be chosen to deliberately circumvent the system resonance fre-
quencies. The PHO method is effectively the dual of the forced harmonic oscillation (sine-sweep) method, in the sense
that both methods require only two measurements (varying PD gains for the former, and varying forcing frequency
ω for the latter), and work on (piecewise) linear, second-order systems—basically mass-spring-damper systems with
Coulomb friction. The main advantage is that now techniques for estimating system parameters based on the free
(unforced) harmonic oscillation may also be applied to situations where it would otherwise be impossible, namely,
insufficiently underdamped systems.

In summary, the parametric harmonic oscillation method is shown to provide a succinct way to estimate the
physical system parameters of a system when a method for estimating ζ and ω0 is available.

We would like to invite the reader to download and examine the c, Matlab and data files used to prepare the
simulations and experimental analysis, by visiting our web address. We would furthermore appreciate any comments
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or feedback via e-mail.
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